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Using x-ray reflectivity to determine the structure of surfactant monolayers
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Interactions among the multiple degrees of freedom of surfactant molecules cause fascinating richness in the
structure of their monolayers. Beyond this scientific motivation for studying surfactant monolayers, the tech-
nological use of monolayers for interfacial control and molecular assembly demands a clear understanding of
monolayer structure. X-ray and neutron reflectivity have become prime techniques for determining this struc-
ture. We present x-ray reflectivity data for a representative surfactant monolayer system and outline an objec-
tive procedure for obtaining the maximum amount of structural information possible. Our approach combines
tight control of instrumental parameters, dynamically optimized Monte Carlo and simulated annealing to probe
the x2 hypersurface, and a set of statistical criteria for accepting and rejecting fits. We justify our procedure
through tests using simulated data. Results indicate that an ensemble of fits must be performed for each set of
reflectivity data in order to survey thex2 hypersurface adequately. A single good fit may yield structural
parameters which are quite misleading, yet physically plausible. Thus, one must never be satisfied with
performing just a single fit. In cases for which multiple, statistically equivalent fits are obtained, the apparent
ambiguity is substantially mitigated by averaging the parameters over the ensemble of good fits. We also
introduce a method of dealing with cases for which a good fit may be extremely difficult to find. Our analysis
procedures can be generalized to other monolayer or multilayer systems and are also applicable to neutron
reflectivity.

PACS number~s!: 68.45.2v, 61.10.Kw, 68.55.2a
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I. INTRODUCTION

The multiple internal degrees of freedom and the a
phiphilic character of surfactant molecules lead to rich a
subtle structural variation in assemblies of these molec
@1#. The tendency of surfactants to assemble at interfa
leads to their use in a wide variety of technologies, includ
complex fluid formulation; interfacial control for wetting
adhesion or lubrication; and molecular assembly for dev
applications@2#. Thus both fundamental and applied obje
tives require accurate, reliable determination of the struc
of surfactant assemblies. In the characterization of mo
layer assemblies, x-ray and neutron reflectivity play a pri
role, along with diffraction, vibrational spectroscopies, a
imaging scanning probe techniques. The purpose of
present work is to outline a procedure for measuring a
interpreting x-ray reflectivity data which maximizes th
structural information obtained from a surfactant monola
at the solid/vapor interface. The technique for data interp
tation is applicable not only to surfactants but to any mo
layer structure and to neutron reflectivity as well.

The amphiphilic property of surfactant molecules giv
rise to self-assembled structures at interfaces as well a
bulk. The structure of these assemblies depends upon
nature of the individual molecules and surfactant concen
tion. If the solvent is polar, the hydrophobic/hydrophilic i
teraction tends to minimize contact between the solvent
the nonpolar hydrocarbon tail groups and to maximize c
tact between the solvent and the polar head groups. T
micelles, vesicles, or other partially ordered phases fo
The size and shape of these structures depend upon the
trostatic and steric repulsion of the head groups in comp
tion with the van der Waals attraction of the tail groups.
PRE 621063-651X/2000/62~2!/2405~11!/$15.00
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addition to these intermolecular forces, intramolecular for
affect the average volume occupied by the tail groups. Wh
trans isomerization is energetically favored in a hydrocarb
chain, the presence of somegauchebonds may be entropi
cally stabilized.

Structures formed at solid/liquid and liquid/vapor inte
faces are likely to be different from those in bulk solutio
due to the additional interaction between the surfactant m
ecules and the solid surface and the constraints of the t
dimensional interface. All of the interactions mention
above dictate the area occupied by each molecule at an
terface. They also determine how volume is filled when ot
constraints dictate molecular spacing~e.g., assembling on an
ordered surface, surface pressure in Langmuir-Blodg
deposition, etc.! or when the molecular structure itself pro
vides multiple length scales@3#. A monolayer may be depos
ited at the solid/vapor interface either by self-assembly at
solid/liquid interface during immersion or by the Langmu
Blodgett technique as the solid is withdrawn from solutio
In either case, the solid substrate is drawn out of solut
through a bulk meniscus and the molecular monolayer p
duced at the solid/vapor interface may not have suffici
mobility to access equilibrium configurations.

There are several important aspects to monolayer st
ture. The overall thickness of the surfactant monolayer p
vides information about the average tilt of the molecules a
the extent to which the tail groups exist in the alltrans con-
figuration. The packing density describes the free volu
afforded each molecule. Thus, through systematic studie
homologous series, we may gain insight into the mechan
controlling the molecular spacing. The density of counte
ons present in the head group region of an ionic surfac
monolayer reveals the nature of the surfactant/surface b
2405 ©2000 The American Physical Society
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ing mechanism. The roughness of the interfaces bound
the monolayer provides further information on disorder
the monolayer.

We attempt to maximize the accuracy and precision
our reflectivity technique with the goal of evaluating the e
ficacy of the method to determine the underlying causes
monolayer structure. We compare parameters and their
certainties to benchmark values of quantities known to ch
acterize the physics controlling structure in a variety
monolayer or layered surfactant assemblies. First, the e
tron density in the hydrocarbon tail region should not exce
6.031023 e/cm3, corresponding to close-packed alka
chains. In the liquidlike lamellar phase of lipids,La , the
electron density is approximately 15% less than this but v
ues considerably lower may occur even for a compl
monolayer if the spacing is dominated by the size of the h
group. Second, the area per molecule of our monolayers
be compared to the area per hydrocarbon chain of~a! crys-
talline hydrocarbons, where the hydrocarbon tails are
trans and tightly packed~19 Å2) @4#; ~b! the hydrocarbon
tails of theLb lamellar phase of a typical lipid, where th
chains are mainlytrans and packed in a less well ordere
array ~24 Å2) @5#; and ~c! the hydrocarbon tails of theLa
lamellar phase of a typical lipid, where the chains are alm
liquidlike with many gauchebonds~31 Å2) @6#. Third, the
uncertainty in the determination of monolayer thickness
be compared to the 15% reduction in thickness due to ch
disordering in the transition from theLb to La phase of
DLPE @7# or a similar size change due to a typical chain
in a monolayer consisting of ordered chains@8#. Fourth, the
precision of the determination of the electron density o
head group region can be compared to the possible di
ence in density due to counterions in an ionic monolay
e.g., the electron density of the head group region in a mo
layer of sodium dodecyl sulfate~SDS! increases by 25% if
all of the Na1 counterions are present compared to the d
sity if no counterions are present. Finally, roughnesses of
interfaces of the monolayer should be compared to the t
cal rms roughness of our oxide surfaces~2–4 Å!, thus reveal-
ing if the monolayer smooths over substrate roughness.

All of the desired structural details can, in principle,
determined by means of x-ray reflectivity which probes el
tron density gradients normal to a surface@9–14#. However,
the rapid falloff of specular intensity with angle of inciden
and the presence of diffuse scattering limit the access
range of momentum transfer. This in turn sets a lower lim
on the length scale of structural features which can
probed. A complementary technique, neutron reflectiv
uses isotopic substitution to enhance contrast between la
@14,16#. However, the same limitations on discernible leng
scales apply to an even greater degree, since the intens
neutron sources is generally much less than the source
x-ray reflectivity. Finally and perhaps most important, t
nonlinearity of the functions to be fit to reflectivity data in
sures that thex2 hypersurface will be highly convolved with
the likelihood of multiple local minima.

Various approaches to analysis and interpretation of
flectivity data have been proposed@17–19#. Of particular
note is the implementation of genetic algorithms as an e
cient method of finding the best possible fit@19#. If the x2

hypersurface contains a single global minimum which is s
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ficiently sharp and difficult to locate, as is the case for hi
signal-to-noise data, genetic algorithms may have an adv
tage over other search techniques. However, as some au
have discussed, there are situations in which the fit is
unique, and the interpretation is rendered ambigu
@18,20,21#. We propose a method of analysis which mitigat
the problem of nonuniqueness of fits and enables a goo
to be found even for high signal-to-noise data.

In this paper we show that obtaining justified conclusio
concerning monolayer structure demands focus on four
sues:~a! careful measurement of all instrumental paramete
~b! judicious choice of the number of fitting parameters,~c!
careful attention to the statistics which indicate a ‘‘good’’
and statistically equivalently ‘‘good’’ fits, and~d! thorough
surveying of thex2 hypersurface to sample the ensemble
fits describing the data. In the next section we describe b
our experimental techniques, emphasizing careful meas
ment of instrument parameters, and our analysis techniq
stressing the nature of thex2 hypersurface and the criteri
for statistical equivalence of different fits. In Sec. III w
illustrate the problems of ambiguity of interpretation wi
examples of experimental data and simulated data. The
perimental data are from a monolayer of SDS. We show h
a cursory analysis suggests that the structure of the mo
layer cannot be determined unambiguously from the fits.
then generate and analyze simulated data for monolaye
SDS in order to determine whether the ambiguity is an
strumental artifact or intrinsic to the experiment. Results
the simulations suggest that the ambiguity arises from ins
ficient surveys of thex2 hypersurface and improper interpre
tation of the meaning of a hypersurface with multiple, stat
tically equivalent local minima. The apparent ambiguity
monolayer structure is substantially removed by averag
parameters over an ensemble of statistically equivalent
We then return to the experimental data, performing a m
thorough search of thex2 hypersurface to find as many goo
fits as possible. The average of parameters over this
semble of fits yields a model which is physically plausib
and has very little structural ambiguity. In Sec. IV, we di
cuss the effects of increased signal-to-noise ratio, wh
might be attained using synchrotron sources. With be
counting statistics, the correct structural model can be rec
ered from the data with a higher degree of accuracy. Ho
ever, a good fit to the data may become more difficult to fi
We conclude in Sec. V with a brief discussion of simulatio
for other monolayer structures and a general statement
protocol for data collection and analysis.

II. EXPERIMENTAL AND ANALYSIS TECHNIQUES

A. Measurement procedure

Our apparatus has been described previously@9,10#. Here,
we emphasize points important for measuring accurate,
solute reflectivity curves. The momentum transfer norma
the substrate surface isQ52ksina, with k being the x-ray
wave number anda the grazing angle of incidence. Th
observed reflectivity signal,R(Q), is affected by a numbe
of instrumental factors@13#. We take considerable care i
setting up measurements so that these factors are well d
mined. We use a rotating anode source with a fine fo
filament, operated at a maximum of 5.2 kW. A vertical
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bent graphite monochromator selects copperKa radiation.
The incident beam shape and divergence are controlled
two sets ofXY slits located 100 mm and 454 mm upstrea
from the sample position. The vertical focusing yields
beam height~parallel to the surface! at the sample of 3 mm
Because of this vertical focusing, the reciprocal space re
lution in the out-of-plane direction is quite broad. In the ho
zontal direction, we typically use a beam width of 0.2 mm
defined by the slits closest to the sample. The upstream
and the x-ray source size determine the angular divergenc
the scattering plane. This divergence determines the res
tion width of the measurement in the radial direction alo
the specular ridge. Because of the small source size, it is
trivial to calculate this divergence so we determine it fro
rocking scans through the (111) Bragg peak of the silic
substrate.

A linear position-sensitive detector~PSD! measures the
specular and nearby diffuse scattering at each angle of
dence@9#. The PSD has the advantage over standard te
niques of explicitly displaying the specular scattering and
diffuse background. The data reduction program fits a fi
parameter PSD response function~a Gaussian with weak
Lorentzian tails@9#! plus a linear background to each PS
data set. Since the program generates a full set of plots o
PSD scans and associated fitting parameters, spurious b
grounds and any alignment errors which could affect the d
are evident. The separation of the signal at highQ into
specular and diffuse components depends on the instrum
tal resolution. In our experiments the typical angular wid
of the specular peak is 0.02°. Diffuse scattering from
sample prevents measurement of signals weaker thanR(Q)
;1028. That is, at largeQ, the PSD data sets contain n
specular peak but have a background well above either
detector dark counts per channel~typically less than 2
31024 per second! or the background present with the bea
on but no sample present. Since the apparent intensit
diffuse scattering is resolution-dependent, the use of a s
chrotron source can improve the signal-to-noise ratio
may extend the range of momentum transfer. But as we s
show, this may render a good fit to the data extremely d
cult to find.

To cover many decades of reflectivity, we adjust x-r
generator power, absorbers, and counting time. For a g
set of these instrumental quantities, we collect data o
some range ofa. At small angles where counting times a
short, we collect overlapping data sets so that the reduc
program can normalize the sets to each other by match
The first data set is normalized to the incident intensity
termined by a direct measurement of the beam made be
the sample is put in place. At largea where counting times
are long, we normalize the data using an incident be
monitor so that slow fluctuations in source strength do
distort the data.

Sample alignment requires the definition of thea50 con-
dition and the placement of the sample surface on thea
rotation axis. Sample positioning is achieved by a set
‘‘beam block’’ scans in which the detector is positioned
receive the incident beam~with a narrow receiving slit tha
blocks any reflected beam!. Then a is varied to block the
beam with first one and then the other end of the substr
The sample is translated into the beam until the peak in
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sity in the beam block scan is one-half that of the incide
beam.a is set to zero at the position of this peak intensity.
the rotation axis passes through the middle of the in-pl
length of the sample, then the beam block is symmetric ab
a50. The final beam block scan also shows the angleab at
which the entire incident beam falls on the sample. With
errors due to the beam profile, the observed angle shoul
ab5w/L, wherew is the beam width andL is the length of
the sample@13#.

B. Samples

Our substrates are polished silicon (111) crystals with
native oxide layer on the surface. The crystals are
mm340 mm33 mm and are supplied by Semiconduct
Processing Company, Boston MA. Crystals of this thickn
are preferred over thinner silicon wafers, which are mo
likely to be macroscopically bowed. Bowing reduces the
fective resolution and thereby reduces the ratio of specula
diffuse scattering. Substrates are cleaned by a stan
chemical process that produces a charged surface under
water @15,22#. Surfactant monolayers are produced by d
ping the crystal in solutions with surfactant concentratio
below 0.5 times the critical micellar concentration@15,16#.
Reflectivity curves for samples discussed in this paper w
measured in air. Repeated measurements are performe
verify that the low-energy surface of the monolayer has
become contaminated and is not significantly damaged
x-ray radiation.

C. Theory and data fitting

While our fitting uses the more rigorous optical matr
method@23#, the Born approximation is helpful for qualita
tively relating the scattering in reciprocal space to real sp
density variations. In this approximation, the specular refl
tivity is given by the Fourier transform of the gradient of th
laterally averaged electron density@13,24#:

R~Q!5
A

Q4 K U E dz
dr̄

dz
eiQzU2L , ~1!

whereA is a constant,̂ •••& denotes an ensemble averag
and

r̄~z!5
1

LxLy
E

Lx

dxE
Ly

dyr~x,y,z!. ~2!

Lx andLy are coherence lengths determined by experime
parameters andr is the local electron density. The coheren
length out of the scattering plane,Ly , is very small due to
the broad resolution in this direction. The in-plane averag
length,Lx , is of the order of ten microns. Measurement atQ

probes variations inr̄ or dr̄/dz of length l52p/Q.
Roughly speaking, to resolve structure down tolmin requires
measurement toQmax52p/lmin . Interference fringes in the
reflectivity data suggest layers of relatively constantr̄

bounded by relatively abrupt changes inr̄.
In our analysis, we parametrize electron density variatio

as shown in Fig. 1. The quantity of basic importance is
index of refraction,n512d1 ib, whered and b are pro-
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portional to the local electron density. We writed
5(l2/2p)rb, wherer is the molecular number density o
molecules having scattering length

b5r e(
i

Zi
effNi . ~3!

r e is the classical electron radius,Zi
eff the effective number of

electrons on atom typei ~including anomalous effects!, and
Ni the number of such atoms in the molecule. Similarly,b
5(l/4p)rs, with

s5(
i

m iM iNi , ~4!

wherem i is the absorption coefficient for atom typei andMi
is the atomic mass. As described in the Appendix, we ca
to d and/orb separately or couple the variations ind andb
via the chemical formula unit number density within th
layer. The latter is practical, for example, when the stoic
ometry of a layer is known or when it is reasonable to p
tition the surfactant layer into sublayers containing the h
and the tail only, with no intermixing of these units acro
the layer boundary. The former method is required if we
not want to bias our interpretation by the rather unrealis
assumption of no intermixing of head and tail across
relatively abrupt variation of the electron density. Absorpti
is a small effect for thin layers, primarily affecting reflectiv
ity near the critical angle. In the present work, we varyd for
the surfactant and for the native SiO2 layer, but keep it fixed
at the known value for the silicon substrate. The value ofb is
two orders of magnitude smaller thand for most materials.
In this work, we keep eachb fixed at a nominal value ap
propriate to the material~hydrocarbon, SiO2 or Si!. This as-
sumption does not affect the results reported here.

Also indicated in Fig. 1 are the interface widths,s i ,
which characterize the smooth but relatively abrupt transit
in electron density across an interface. We assume these
sitions have error function forms. The use of a smooth tr

FIG. 1. A schematic diagram showing the parametrization o
surfactant layer on a silicon substrate.r i and t i are densities and
thicknesses for each layer, whiles i are effective interface widths o
roughnesses. The z axis is perpendicular to the film plane and
define the zero at the nominal position of the bulk silicon surfa
Air is above layer 1 and bulk silicon is below layer 3.
fit
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o
c
e

n
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sition is justified by the fact that the measurement repo
laterally averaged densitieswithin the coherence length o
the x rays andensemble averaged intensitiesacross the beam
width as emphasized in Eqs.~1! and ~2!. The local electron
density may vary smoothly across an interface due to
smooth evolution in molecular concentration variables.
additional width is generated by the fact that the interfa
itself may vary in position due to static roughness@24# ~or on
a fluid surface, kinetic undulations! within the length scale
Lx . It should be emphasized that if roughnesses have
amplitude comparable to or larger than the thickness o
bounding layer, then that layer is effectively removed fro
the scattering signal.

Our computer program,SPEEDO, uses a combination o
dynamically optimized Monte Carlo@25,26# and simulated
annealing@27# techniques to attempt to find the global min
mum of thex2 hypersurface. The program models instr
mental effects and offers a variety of options as describe
the Appendix. In work on surfactant monolayers, one sho
compute the model reflectivity with the rigorous matr
method@23,28# rather than the Nevot-Croce approximatio
@29# because layer thicknesses are likely to be comparab
bounding roughnesses. The program is initialized by sp
fying starting points and reasonable limits for each of t
fitting parameters. To illustrate what we mean by reasona
limits, a surfactant monolayer layer thickness may be
lowed to vary between zero and twice the fully extend
molecule length, so as not to rule out the possibility of
bilayer, and the electron density of the hydrocarbon
group may not exceed that of crystalline hydrocarbon cha
In the fits presented here, only those parameters which
scribe the layer structure are varied. Other parameters w
take into account the geometry of the sample and the ins
mental resolution are determined independently in the la
ratory and are kept fixed. A typical fit for a surfactant lay
on a silicon crystal with a native oxide layer involves te
floating parameters: four roughnesses, three thicknesses
three densities. The electron density of bulk silicon is fix
to its known value.

In order to define the language used below, we need
review the statistics of least-squares fitting.x2, the function
being minimized in the fit, is defined according to the expr
sion

x25(
i 51

N F r ~Qi !2 f ~Qi ,$p%!

ei
G2

, ~5!

where ther (Qi) are the measured reflectivity data with u
certainties,ei , assigned according to Poisson statistics. T
f (Qi ,$p%) are the calculated reflectivities for a particular s
of model parameters,$p%. The assumption of Poisson stati
tics for our measured intensities is justified since we do
operate near the dark count levels of our detector. The ‘‘st
dard errors’’ in the fitting parameters are set by thexmin

2

11 contour about the minimum in thex2 hypersurface@30#.
If several sets of data are obtained from the same phys

system, the value ofx2 for a fixed set of fitting parameter
will vary from one data set to another due to Poisson no
on the data. There exists an average value ofx2 for the
ensemble of data sets and a standard deviation about
mean. For a set of model parameters which represent

a

e
.
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adequate characterization of the measurement, the m
value of x2 is n5N2d, where N is the number of data
points, d is the number of fitting parameters, andn is the
number of degrees of freedom in the fit@31#. The ‘‘uncer-
tainty’’ in x2 is calculated by taking partial derivatives o
Eq. ~5! with respect to ther (Qi), multiplying by ei , and
adding terms in quadrature. The result is

ex252An. ~6!

The reduced chi-square,xn
2 , is defined asx2/n and should

have unit mean and a standard deviation,ex
n
252/An. Any

sets of parameters which yieldx2 values withinex2 of the
lowestx2 arestatistically indistinguishable. If, for one data
set, $p%0 is the optimal parameter set withx0

2, a different
data set from the same physical system will likely yield, f
$p%0, a x2 value withinex2 of x0

2, but a different paramete
set, $p%1, will be optimal. We cannot select between$p%0
and $p%1 as being more likely to correctly describe th
monolayer.

We also include in our analysis plots of the residuals,

D i5
r ~Qi !2 f ~Qi ,$p%!

ei
. ~7!

Ideally, 95% of the residuals should fall within a band abo
zero of width62. Most important, the fluctuations shou
have no near-neighbor correlations. An example of suc
residuals plot is shown in Fig. 2~a!. We use the residuals plo
to look for ‘‘systematic deviations,’’ defined as any oscill
tion having a ‘‘wavelength’’ which is an appreciable fractio
of the momentum transfer range covered by the entire d
set. Examples of residuals plots showing systematic de
tions are shown in Figs. 2~b! and 2~c!.

Thus, we arrive at two criteria for statistical acceptance
a set of parameters. The first criterion is to demand that

FIG. 2. Examples of residuals plots for~a! a good fit, ~b! a
marginally unacceptable fit, whosex2 exceeds the best fitx2 by
more than 2ex2, and ~c! a poor fit with obvious systematic devia
tions.
an

r

t

a

ta
a-

f
e

residuals plot show no systematic features. In addition,
demand that thex2 value be withinex2 of the best value we
find. Fits which satisfy these criteria are termed ‘‘good’’ fit
Multiple fits fulfilling these criteria must be considere
equally valid in determining monolayer structure.

For a fit with d free parameters, thex2 function is a (d
11)-dimensional hypersurface. A two-dimensional c
through the hypersurface is illustrated schematically in F
3. In an ideal situation, the best fit corresponds to a sin
global minimum on the hypersurface@Fig. 3~a!#. Any other
local minima should correspond to fits which are unacce
able by the criteria set forth above. In practice, there
situations in which the hypersurface contains one or m
minima which are statistically indistinguishable from th
global minimum and show no systematic residuals, but
sufficiently separated in parameter space to cause ambig
in the physical description of the monolayer@Fig. 3~b!#. We
discuss two examples in detail in Sec. III.

Our general strategy for analysis is to initialize the sim
lated annealing program from several different parame

FIG. 3. Illustrations of possible structure of thex2 hypersurface.
~a! The ideal situation: a single global minimum corresponding t
good fit, local minima corresponding to poor fits;~b! multiple, sta-
tistically equivalent minima, all corresponding to good fits: a tho
ough survey of the hypersurface must be performed to avoid am
guity or misleading results; and~c! the single minimum for high
signal-to-noise data may be extremely narrow and difficult to loc
by a random search process.
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sets and to run the program multiple times from each se
initial conditions. These initial conditions are widely sep
rated in parameter space, as evidenced by the variation in
initial value of x2, but all are within physically plausible
limits. This enables us to probe thex2 hypersurface and to
locate as many good fits to the data as possible. We calcu
the average and standard deviation of the values of e
parameter across all the good fits. As more good fits
found, the uncertainty~standard deviation! of the ensemble
averaged parameters is reduced. When the parameter u
tainties have been reduced to the point at which we can d
conclusions about the structure with reasonable confide
we call an end to the fitting process.

A given attempt to fit data from a specific set of initi
values of the parameters results in one of three possible
comes.~a! The desirable outcome is a ‘‘good’’ fit as judge
by the residuals plot,x2 value, and the fact that none of th
parameters has saturated at the preset limits. In this pape
rely only on fits this type.~b! One or more of the paramete
saturates at the preset limits. If this occurs we do not co
the fit as legitimate, regardless of the quality of the fit.~c!
The fit yields a parameter set that is within preset limits
the fit is not ‘‘good,’’ as indicated by a residuals plot wit
systematic deviations. This may occur if the model is ins
ficient to describe the data or if the fit locates and does
escape from a local minimum in thex2 hypersurface. If a
large number of attempts fails to find a good fit, we conclu
that the model must be insufficient. The model is then m
more general by subdividing a layer into two parts. If hi
counting statistics are attained on all data points, an acc
able fit may exist but the minimum in thex2 hypersurface
may be very narrow and hard to find@see Fig. 3~c!#. We
discuss methods of dealing with this case in Sec. IV.

III. STATISTICAL DETERMINATION OF MONOLAYER
STRUCTURE

A. Analysis of experimental data from an SDS layer

In this section we present the results of fits to experim
tal data obtained from an SDS monolayer on silicon. T
exercise demonstrates the problems described above.
data, shown in Fig. 4, span more than eight decades in
flectivity and extend toQmax50.74 Å21 or lmin'9 Å. As
discussed in Sec. II, all instrumental parameters were
carefully determined as possible. Attempts to fit the data
model with two layers~surfactant plus oxide! yield statisti-
cally unsatisfactory results so we fit the data to a model w
three layers: two regions representing the SDS monola
and one representing the silicon oxide. We recognize
adding a layer to the model adds three parameters to th
and thus may overparametrize the data. This may lead to
multiplicity of good fits we find. However, imposing a con
straint coupling the properties of the surfactant sublay
would require precise knowledge of some aspect of fi
structure. In the present case, we have no such knowled

To obtain a reasonably complete survey of thex2 hyper-
surface, we start the simulated annealing from three wid
different initial parameter sets. In this exercise, a total
thirteen simulated annealings were performed. This reve
three ‘‘good’’ fits with statistically equivalentx2. Each of
the good fits was obtained from more than one of the ini
of
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parameter sets. The results of these fits are shown in Tab
However, the parameter sets from these fits are statistic
distinct, i.e., the parameters do not agree within the stand
errors. The solid line in Fig. 4 is one of the three accepta
fits. The inset shows no systematic variations in the resi
als; virtually all deviations are less than two error bars. F
ure 5 showsd(z) for the three fits. Clearly, different densit
profiles describe the same data equally well.

In fact, these acceptable fits suggest very different phy
governing the SDS monolayer structure. In fitC, the electron

FIG. 4. Experimental data from an SDS layer on a silicon s
strate. The solid line is one of three statistically equivalent good
The inset shows a plot of the residuals as defined in Eq.~7!. Param-
eters for the three fits are shown in Table I.

TABLE I. Three fits to experimental data from an SDS mon
layer. Fitting parameters are as defined in Fig. 1. Quantities in
ics are derived from the fitting parameters. Numbers in parenth
indicate the uncertainty in the preceding digit. The column labe
‘‘average’’ is the~unweighted! mean and standard deviation of 2
good fits to the data. The value ofdSi57.3731026 was fixed to
correspond to the bulk density.

Parameter FitA Fit B Fit C 21 fit average

s1 (Å) 2.163~6! 2.390~6! 2.479~1! 2.4~1!

t1 (Å) 15.52~1! 10.77~1! 11.820~5! 10.5~8!

106d1 1.79~1! 1.870~3! 2.216~2! 1.9~1!

d1t1 (Å) 27.8(2) 20.14(4) 26.19(3) 20(2)
s2 (Å) 6.652~9! 3.25~3! 5.121~4! 5.9~5!

t2 (Å) 2.01~1! 4.38~1! 8.46~1! 6.5~7!

106d2 1.054~7! 2.799~5! 6.517~2! 6.1~6!

d2t2 (Å) 2.12(2) 12.26(4) 55.13(7) 40(6)
s3 (Å) 4.73~2! 7.505~5! 2.77~2! 4.1~5!

t3 (Å) 8.07~3! 10.24~2! 11.62~9! 11.2~5!

106d3 7.807~4! 7.892~3! 7.341~2! 7.40~6!

d3t3 (Å) 63.0(2) 80.81(8) 85.3(7) 82.61(5)
s4 (Å) 1.80~4! 2.79~2! 2.6~1! 2.1~3!

( i 51
2 t i (Å) 17.53(1) 15.15(1) 20.28(1) 17.0(7)

( i 51
3 t i (Å) 25.60(3) 25.39(2) 31.9(1) 28.1(8)

( i 51
2 d i t i 29.9(3) 32.4(1) 81.4(7) 55(4)

area per molecule
(Å2)

55.6(6) 51.3(2) 20.5(2) 36(5)

xn
2 0.64 0.60 0.65
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density of layer 2 is substantially greater than that of laye
as indicated by the parameter,d. For the SDS molecule this
suggests a configuration with head groups downward tow
the substrate and tail groups upward. The thickness of
layer 2 in fit C, while less than that of the outer region,
substantially larger than the size of the sulfate head gr
~about 3.5 Å! of the SDS molecule. This suggests a hi
degree of disorder in the head group region. The productt
and d, summed over the surfactant regions, is inversely
lated to the projected area per molecule. For fitC this yields
20.5 Å2, which falls midway between the minimum fo
close-packed hydrocarbon chains and theLb ~gel! phase. The
electron density of the outermost region is considera
lower than either of these two. The complete picture p
vided by fit C is consistent with a layer of SDS molecule
which are highly staggered in the direction normal to t
surface, with tail groups in nearly the alltransconfiguration.
By contrast, fitB has an area per molecule of over 50 Å2,
which is considerably greater than required for the liquidl
phase of hydrocarbon chains dominated bygauchebonds. Fit
B also has higher density in layer 2, but the difference
much less than in fitC. This could suggest a highly disor
dered monolayer, having some of the head groups do
ward, but with substantial intermixing of head and t
groups. The area per molecule of fitA is comparable to fitB,
but in this case it is the outer region which has somew
higher electron density. This would also suggest a hig
disordered monolayer, but with more of the head groups
the upper region.

Obviously, thex2 hypersurface for this set of data ha
multiple minima, at least three of which correspond to exc
lent but quite distinct fits. On the basis of this analysis,
cannot draw conclusions regarding key structural charac
istics: e.g., division of the surfactant layer into separate
and head regions, thetrans/gaucheisomerization of the tail,
or the packing density of molecules on the surface. In
next section, we present an analysis of simulated dat
order to explore the conditions which give rise to the o
served ambiguity and a resolution of that ambiguity.

FIG. 5. The contrast variable,d(z), obtained from three fits to
the data of Fig. 4. Parameters are shown in Table I.
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B. Analysis of simulated data

We useSPEEDOto generate reflectivity data points whic
would arise from the x-ray reflection experiment on a pla
sible SDS monolayer. To these data we add random n
bers, Gaussian distributed about zero, scaled proportion
to the squareroot of the reflectivity. To mimic experimen
data in which statistical accuracy worsens as the reflecti
decays~in spite of adjustments in counting time and sour
power!, different proportionality factors are used in differe
sections of the simulated data. The magnitude of the ad
noise is comparable to that for the experimental data in F
4.

In our simulations, we exclude limitations onQ due to
diffuse scattering. Thus the simulated data~Fig. 6! cover an
even larger range ofQ and reflectivity than our real dat
~Fig. 4!. Further, theSPEEDOalgorithm generates data simila
to but not identical to real experimental data. Approxima
correction factors~e.g., overfilling of the sample by the inci
dent beam and scaling of the data to unit reflectivity! used in
analyzing real data are simulated as if they were exact. S
we will show below that simulated data give rise to the sa
difficulty of interpretation as seen in real data, it is clear th
neither instrumental complications nor limits onQ due to
diffuse scattering can be the sole cause of ambiguity.

The simulated data shown in Fig. 6 are generated from
model in which the tail groups are in theLa ~liquidlike! state
and the electron density in the head region is determined
stoichiometry. The complete set of model parameters
shown in Table II. Following the procedure of the precedi
section, we performed eighteen simulated annealings
found five distinctly different, good fits to the data, all o
which are statistically indistinguishable. One of these fits
shown in Fig. 6. Parameters for the five distinct, good fits
shown in Table II. Figure 7 shows that dramatically differe
density profiles can fit the same data set. The trends ac
these fits are virtually identical to those for the experimen
data: The results of the individual fits do not agree with t
parameters used to generate the data. Further, equally
fits give very different pictures of the monolayer.

The ensemble of fits to the simulated data is consis
with a x2 hypersurface as illustrated in Fig. 3~b!. Instead of a

FIG. 6. Simulated data for an SDS layer on a silicon substr
The solid line is one of five statistically equivalent good fits. T
inset shows a plot of the residuals as defined in Eq.~7!. Parameters
for the five fits are shown in Table II.
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single, well-defined global minimum, corresponding to t
best fit, there are several local minima withinex2 of one
another, all of which represent good fits to the data. T
broad minimum in which these local minima occur has
width comparable to the standard deviation obtained by
eraging parameters over the set of local minima. By comp
ing the last two columns of Table II, we can see that
averaged parameters from the ensemble of acceptable

TABLE II. Five acceptable fits to simulated data for an SD
monolayer and comparison to the model parameters. Standar
rors on individual fitting parameters are omitted for clarity. T
‘‘Average’’ column contains the unweighted mean of paramet
for these five fits~standard deviation in parentheses!. Quantities in
italics are derived from the fitting parameters.

Parameter FitA Fit B Fit C Fit D Fit E Average Model

s1 (Å) 3.219 2.465 2.713 2.248 2.859 2.7~3! 2.40
t1 (Å) 1.721 12.67 11.74 12.66 10.42 10~4! 11.5
106d1 2.727 3.428 3.013 2.616 3.425 3.0~3! 2.85
d1t1 (Å) 4.69 43.4 35.4 33.1 35.7 30(13) 32.7
s2 (Å) 2.206 3.408 2.311 3.408 7.251 4~2! 2.40
t2 (Å) 11.48 6.524 2.315 6.435 2.011 6~3! 3.60
106d2 3.971 7.241 5.281 7.221 1.581 5~2! 5.55
d2t2 (Å) 45.6 47.2 12.2 46.5 3.18 31(19) 19.9
s3 (Å) 2.603 8.999 2.856 8.661 3.232 5~3! 2.40
t3 (Å) 17.09 10.00 15.10 10.01 16.57 14~3! 14.0
106d3 7.201 7.109 7.073 6.983 7.082 7.09~7! 7.05
d3t3 (Å) 123.1 70.1 106.8 69.9 117.3 97(23) 98.7
s4 (Å) 1.686 2.403 2.046 2.641 2.052 2.2~3! 2.40
( i 51

2 t i (Å) 13.2 19.19 14.05 19.10 12.43 16~3! 15.1
( i 51

3 t i (Å) 30.29 29.19 29.15 29.11 29.0029.3~5! 29.1
( i 51

2 d i t i 50.59 90.6 47.6 79.9 38.88 61(10) 52.6
area per
molecule
(Å2)

33.09 18.3 34.95 20.9 42.8 30(5) 31.5

x2 1.09 1.02 0.965 1.143 1.008

FIG. 7. The contrast variable,d(z), obtained from five fits to the
simulated data for an SDS monolayer withLa tails ~Fig. 6!. The
original model is indicated by the solid line. Parameters are sho
in Table II.
e

v-
r-
e
fits

~next-to-last column in Table II! are all within a standard
deviation of the known model parameters.

We conclude that this procedure produces a valid met
of arriving at a unique model of the monolayer structu
While each individual good fit describes a monolayer str
ture consistent with the data, the statistical ensemble of th
good fits yields valid estimates for the model parameters
well as their uncertainties. Thus, this analysis of the refl
tivity data produces a unique picture of the structure of
monolayer which is highly likely to be correct.

C. Experimental data revisited

Given the procedure suggested by our simulations,
now return to the experimental data for SDS which we e
amined in Sec. III A. We perform anadditional thirty-four
simulated annealings. Twenty-one fits were ‘‘good,’’ wi
statistically equivalent values ofx2. The ensemble average
values of the fitting parameters for these fits~listed in the last
column of Table I! yield a picture of the monolayer which
has a region of higher electron density~layer 2! adjacent to
the substrate. The density suggests SDS head groups
counterions present. The thickness of this region is appr
mately twice as large as the SDS head group, indicating s
stantial disorder. The thickness of the outermost~tail group!
region and the overall area per molecule are both consis
with hydrocarbon chains in theLa phase. Thus, the tail re
gion likely contains considerablegaucheconformations and
probably dictates the molecular spacing. The roughnes
the outermost interface~between the air and the tail group!
is comparable to the expected 2–4 Å rms roughness whic
typical of polished silicon crystals. This shows that t
monolayer as a whole follows the contours of the solid s
face. The roughness of the interfaces bounding the h
group region is two to three times larger than the outerm
interface, again consistent with a highly disordered head
gion. The density of the third region is consistent with t
known structure of low-density SiO2, and the thickness o
the layer is typical of native oxide layers on silicon crysta
Thus, by averaging the parameters obtained from an
semble of statistically equivalent, good fits to the data,
obtain a model which is physically plausible in every deta
The uncertainties in the parameters give reasonably t
bounds on all parameters compared to the benchmark va
we discussed in Sec. I.

Since the thickness of the head group region is at the li
of our length scale resolution, conclusions about structu
details of this region are rather tenuous. However, the p
ence of counterions, as suggested by the ensemble aver
fitting parameters, provides insight into the physics of t
formation of the SDS monolayer. The organic ion of the SD
molecule has the same charge as the silica substrate at
tral pH. Thus, a self-assembled monolayer is unlikely
form at the solid/liquid interface if the counterion and o
ganic ion are mostly dissociated in solution. With counte
ons present in the head group region, the organic ion is n
tralized, enabling the molecule as a whole to be attracte
the substrate.

IV. IMPROVED COUNTING STATISTICS

The data we examined above had statistics typical of
experiment using a rotating anode source. Given the av
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ability of synchrotron sources, we ask what changes in
situation described above will occur if these more power
sources were used. First, the issue of sample degrad
must be treated carefully since high x-ray doses are know
degrade surfactant monolayers@12#. Second, since the sepa
ration of the signal at highQ into specular and diffuse com
ponents depends on the instrumental resolution, the hig
resolution available at synchrotron sources, combined w
increased flux, may provide an additional decade or mor
specular intensity. Depending on the sample, this could
tend theQ range of the reflectivity data to approximately
Å21. However, as we suggested in the preceding sect
limitation of the Q range due to diffuse scattering does n
seem to be a significant cause of ambiguity of interpretat
Finally, we could obtain reflectivity data with better statisti
at all Q. In this section we investigate the effects of the
higher counting statistics.

We use the same simulated SDS model as above, but
scatter to the ideal model data which is reduced by a facto
10. In a real measurement, this would correspond to
times the counting statistics. Thirty fits were performed fro
a variety of initial parameter sets. Three of these fits
‘‘good’’ and locate the same minimum in thex2 hypersur-
face. Further, the parameters obtained at this minimum
within the standard error of the original model paramete
Thus, extremely precise data allow recovery of the corr
parameters for even this rather smeared electron density
file ~similar to Fig. 7! and the uncertainties in these para
eters are decreased by the higher statistics.

A caveat to the above conclusion is that the reduced n
has made the global minimum extremely narrow and diffic
to locate@see Fig. 3~c!#. Further, a second best set of para
eters exists which is much more easily located than the
~found in eight out of the thirty attempts!. Our criteria reject
this as a ‘‘good’’ fit because the residuals plot contains s
tematic features. However, if the lower minimum we
missed in the statistical survey, one might assume this
the best possible fit and add another layer, unnecess
overparametrizing the fit. Since the global minimum is
difficult to find, we tried adding additional Gaussian noise
the data. We found that when the noise is comparable to
of the previous SDS simulation~and to our experimental dat
sets! we could follow the procedure outlined in Sec. III an
obtain multiple ‘‘good’’ fits. Using each of these fits as sta
ing points for fits to the nondegraded data, we recovered
correct best fit from at least one of these starting points.

V. DISCUSSION AND CONCLUSIONS

Relative contrasts between the subsections of the mo
layer can improve or degrade the ability of reflectivity da
to discern monolayer structure. We have discussed in d
experimental data and simulations for SDS with tail grou
in the La ~liquidlike! state. Even with signal-to-noise da
typical of a rotating anode experiment, most of the import
physics of the monolayer structure can be deduced by
semble averaging of the fitting parameters for all statistica
equivalent good fits. High signal-to-noise data are require
discern the details of the head group region. We attribute
to the relatively poor electron density contrast between
SDS head group and the underlying SiO2 layer. To examine
e
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cases where contrasts are greater, we have also perfo
simulations for monolayers of cetyl trimethylamonium br
mide (C16TAB) with tail groups in theLa state, and for SDS
with tails in theLb ~gel-like! state. ForC16TAB the electron
density contrast is good between head group and subst
but poor between the head and tail regions. LikeLa SDS, the
monolayer has a region which is not well resolved as a se
rate layer, and the results of fitting the data are similar.
lower signal-to-noise ratio, the essential physics of
monolayer is recoverable, but there is a high degree of
certainty in the details of the head group region. At high
signal-to-noise ratio all of the structural details are reco
ered. ForLb SDS, the electron density of the head group
significantly higher than that of the underlying SiO2. As can
be seen in Fig. 8, the head group region is better resolve
a separate layer. All of the structural details of this mon
layer were recovered by ensemble averaging of the good
even for lower signal-to-noise data.

A possible concern when using high statistics data is t
the measurement becomes highly sensitive to the functio
form of the interfacial density profiles. The error functio
profile, which is the typical form used to fit data, may not
correct and may give misleading information. To test th
idea, we simulated a data set in which the profile connec
the head and tail regions of the molecule follows a hyp
bolic tangent form. We fitted this data set in the usual w
assuming error-function transitions at all interfaces. The
sult is essentially a null result: the error function fits t
hyperbolic tangent to within a few percent; there is very lit
difference between these functional forms.

We have outlined a procedure for analyzing reflectiv
data that yields reliable and objective structural informat
for monolayer systems. Thex2 hypersurface is probed b
performing multiple fits to the data from a variety of startin
points using the method of simulated annealing. For a mo
layer system in which the features are not all well resolv
and the signal-to-noise ratio is comparatively low, multip
statistically equivalent minima exist in thex2 hypersurface
which correspond to different physically plausible structu

FIG. 8. The contrast variable,d, for a simulated SDS monolaye
with Lb tails. The solid line is the model. The dashed line is a fit
the data with added noise.
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2414 PRE 62B. B. LUOKKALA, S. GAROFF, AND R. M. SUTER
pictures. For this reason, a single good fit to the data is
sufficient to make certain types of claims of structural det
The interpretation of the data must be derived from the
erage and standard deviation of fitting parameters acros
ensemble of statistically equivalent, good fits. Since the g
bal minimum in thex2 hypersurface may be too sharp
locate in a reasonable amount of computing time for h
signal-to-noise data, it may be difficult to find any good
One can try the addition of noise as an intermediate step
appropriate amount of noise will broaden thex2 minimum. If
good fits are found, the corresponding parameters for at l
one of them should be within a standard error of the corr
ones. One can then remove the added noise and start
with each of the previously obtained parameter sets to se
a good fit is obtained.

Whereas genetic algorithms may provide an efficient w
to eliminate all but the best possible fit to the data, our sim
lations indicate a need to perform multiple fits in order to g
a sense of the complexity of thex2 hypersurface. There ma
exist parameter sets which are different from the corr
model, but which yield equally ‘‘good’’ or slightly ‘‘better’’
fits to the data. Thus, reliance on only a single good fi
even the best possible fit—may be misleading. Our res
suggest that neither uncertainty in instrument parameters
limitations on the range ofQ due to diffuse scattering ar
significant causes of this ambiguity. Rather, the apparent
biguity in the monolayer structure is the result of inadequ
surveying of thex2 hypersurface, particularly when there
poor contrast in the electron density profile and/or insu
cient signal-to-noise ratio.

Although we have focused in this paper on the struct
of surfactant monolayers, our method can be generalize
any monolayer system, including thiols, block copolyme
etc. Our results have shown that high signal-to-noise data
not necessarily required to deduce all of the structural de
of a monolayer, provided that the various regions of
sample are well resolved in the electron density profile. U
fortunately, this is often not the case. The success of neu
reflectivity depends upon isotopic substitution to compens
for the comparatively low source intensity. But there is
analogous technique for x rays. Perhaps the most impor
conclusion of our work is that the essential physics of mo
layer structures can still be deduced—even when the elec
density contrast is not high for all the regions—by tho
oughly surveying thex2 hypersurface and ensemble avera
ing the parameters obtained from all statistically equival
good fits.
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APPENDIX: SPEEDO

Our computer program, calledSPEEDO @32#, uses a dy-
namically optimized Monte Carlo@26# simulated annealing
@27# technique to find optimal parameter sets. The use
such a complex algorithm is justified when thex2 hypersur-
face, defined in the space of fitting parameters, is rough
has more than one local minimum. Here, we briefly descr
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simulated annealing and our implementation of the dyna
optimization technique.

In applying simulated annealing to least-squares fitti
x2 takes the role of an energy function, and Boltzmann s
tistics with an effective temperature,T, are applied to trial
changes in parameters~or ‘‘moves’’!. The analogy is to ther-
mal annealing and slow cooling of a physical system in or
to put the system into its ground state. Trial moves are g
erated through a random process~see below!. A move which
reducesx2 is always accepted~i.e., the fitting parameters ar
updated to the trial set!. A move which increasesx2 is ac-
cepted with probabilitye2Dx2/T. In our algorithm, the num-
ber of Monte Carlo trial moves at eachT is adjustable, and is
scaled by a factord2.5, whered is the number of free param
eters in the fit. Thus, as the dimensionality of the parame
set becomes large, simulations become time consuming
the simulation proceeds,T is reduced in an attempt to fin
the global minimum ofx2 and the corresponding paramet
set. In our algorithm,T is reduced exponentially, with an
adjustable number of steps per decade. A typical simula
annealing used in this paper performs 6324 trial moves
each temperature, with four temperature steps per decad

We have implemented the dynamic optimization proc
dure of Bouzida, Kumar, and Swendsen@26#. This procedure
adjusts the average step size in any direction in the param
space so that the acceptance ratio for trial moves is nei
too large nor too small. Small steps lead to slow change
x2 even if all trials are accepted; large moves lead to sl
changes inx2 because few trials are accepted. During t
simulation, the size and shape of ad-dimensional correlation
ellipsoid is adjusted; each trial move is then defined in
random direction in this ellipse, with larger changes
‘‘soft’’ directions than in ‘‘hard’’ directions.

We mention here a few of the details of howSPEEDO

works. The program can either generate a reflectivity cu
based on input parameters~‘‘forward model’’! or it can read
a data file and perform a fit. The reflectivity can be calcula
in several ways. The computationally efficient ‘‘Q2Qt’’ ap-
proximation@24,29# is appropriate when all layers are thick
than their bounding roughnesses. The rigorous optical ca
lation @28,23# is more general. The program inserts erro
function transitions between layers with widths given by t
roughness parameters. The error function is approximate
a series of steps of widthp/(8Qmax). One may also read a
file with an arbitraryd vs z and haveSPEEDOgenerate the
corresponding reflectivity. There are several instrument
rameters. The reciprocal space resolution is computed f
the angular divergence of the input beam. The progr
checks the spacing of experimental data points and give
warning if this spacing is larger than the resolution. In th
case, a file is generated which contains the original d
points plus additional points~with 100% errors! which fa-
cilitate correct computation of the resolution convolutio
sum. A wavelength distribution can also be included~conve-
nient for neutron work!. A correction is made to the com
puted reflectivity for the case where a fraction of the inp
beam misses the sample at low angle (;sina/sinab as long
as this is,1, ab being the minimum angle at which th
complete width of the beam is on the sample! @13#. Finally,
an overall normalization factor multiplies the comput
curve. It should be noted that in fitting, these instrume
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parameters can interact with the physical parameters des
ing layer structures. While the instrument parameters can
used as fitting parameters, one must determine the value
closely as possible through independent measurements~see
main text!.

All parameters describing a layer structure and all
instrument parameters are potential fitting parameters. E
potential parameter is given an initial value which~i! can be
fixed, ~ii ! can be constrained to a specified range, or~iii ! can
be tied to a similar parameter in another layer~convenient for
multilayer samples!. Narrowing the variation of a paramete
to a physically plausible range reduces the volume of par
eter space which must be covered and makes simula
more efficient. One may specify the composition of a lay
S
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by defining a molecular scattering length and absorpt
cross section~then allowing the molecular number density
vary!, or one can describe a layer by independent variation
d and b. The incident medium can be defined to be oth
than vacuum and can be included in the fitting parame
~again convenient for neutron work and for electrochemi
studies@33#!.

In contrast to standardx2 minimization algorithms@31#,
simulated annealing allows the parameter set to move o
local maxima to locate deep minima far from the starti
point. For a roughx2 surface, however, performance o
simulations and interpretation of results is not straightf
ward. We demonstrate in the body of this paper a mean
dealing with such complex situations.
rs,
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